Content posted to this wiki are contributions made by the IMAG research community.
Any questions or concerns should be directed to the individual authors. Full disclaimer statement found here

DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data

What is being modeled?
Spatial locations of scRNA-seq data
Description & purpose of resource

DEEPsc uses a neural network to obtain a data-adaptive projection of cells in scRNA-seq to the corresponding spatial imaging or spatial transcriptomic data of the same tissue.

Spatial scales
This resource is currently
mature and useful in ongoing research
Has this resource been validated?
How has the resource been validated?

Validated on four pairs of scRNA-seq data and spatial data including drosophila embryo, mouse hair follicle, zebrafish embryo, and mouse cortex.

Key publications (e.g. describing or using resource)

Maseda, Floyd, Zixuan Cang, and Qing Nie. "DEEPsc: A Deep Learning-based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data." Frontiers in Genetics 12 (2021): 348.

Qing Nie (PI)
PI contact information
Table sorting checkbox